×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2307.11665v2 Announce Type: replace
Abstract: Gravity theories that modify General Relativity in the slow-motion regime can introduce nonperturbative corrections to the stochastic gravitational-wave background~(SGWB) from supermassive black-hole binaries in the nano-Hertz band, while remaining perturbative in the highly-relativistic regime and satisfying current post-Newtonian~(PN) constraints. We present a model-agnostic formalism to map such theories into a modified tilt for the SGWB spectrum, showing that negative PN corrections (in particular -2PN) can alleviate the tension in the recent pulsar-timing-array data if the detected SGWB is interpreted as arising from supermassive binaries. Despite being preliminary, current data have already strong constraining power, for example they set a novel (conservative) upper bound on theories with time-varying Newton's constant at least at the level of $\dot{G}/G \lesssim 10^{-5} \text{yr}^{-1}$ for redshift $z=[0.1\div1]$. We also show that NANOGrav data are best fitted by a broken power-law interpolating between a dominant -2PN or -3PN modification at low frequency, and the standard general-relativity scaling at high frequency. Nonetheless, a modified gravity explanation should be confronted with binary eccentricity, environmental effects, nonastrophysical origins of the signal, and scrutinized against statistical uncertainties. These novel tests of gravity will soon become more stringent when combining all pulsar-timing-array facilities and when collecting more data.

Click here to read this post out
ID: 842541; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: