×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2309.07634v2 Announce Type: replace
Abstract: In a generic theory of gravity coupled to matter fields, the Smarr formula for black holes does not work properly if the contributions of the coupling constants defining the theory are not incorporated. However, these couplings, such as the cosmological constant or the dimensionful parameters that appear in the Lagrangian, are fixed parameters defining the theory, and they cannot be varied. Here, we present a robust method, applicable to any covariant Lagrangian, that upgrades the role of the couplings from being constants in the theory to being free parameters of the solutions. To this end, for each one of the couplings in a theory, a pair of auxiliary scalar and gauge fields is introduced. The couplings are shown to be conserved charges of the global part of the implemented gauge symmetry. Besides, their conjugate chemical potentials are defined as the electric potential of the corresponding gauge fields on the black hole horizon. Using this method, we systematically extend the first law and the Smarr formula by coupling conserved charges and their conjugate potentials. The thermodynamics of a black hole solution in a quadratic gravity theory is given as an example.

Click here to read this post out
ID: 842542; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: